Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 1271, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277476

RESUMEN

There is increasing interest in the roles of covalently modified nucleotides in RNA. There has been, however, an inability to account for modifications in secondary structure prediction because of a lack of software and thermodynamic parameters. We report the solution for these issues for N6-methyladenosine (m6A), allowing secondary structure prediction for an alphabet of A, C, G, U, and m6A. The RNAstructure software now works with user-defined nucleotide alphabets of any size. We also report a set of nearest neighbor parameters for helices and loops containing m6A, using experiments. Interestingly, N6-methylation decreases folding stability for adenosines in the middle of a helix, has little effect on folding stability for adenosines at the ends of helices, and increases folding stability for unpaired adenosines stacked on a helix. We demonstrate predictions for an N6-methylation-activated protein recognition site from MALAT1 and human transcriptome-wide effects of N6-methylation on the probability of adenosine being buried in a helix.


Asunto(s)
ARN , Programas Informáticos , Adenosina/análogos & derivados , Secuencia de Bases , Humanos , Conformación de Ácido Nucleico , ARN/química , Termodinámica
2.
RNA ; 28(4): 508-522, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983822

RESUMEN

Influenza A kills hundreds of thousands of people globally every year and has the potential to generate more severe pandemics. Influenza A's RNA genome and transcriptome provide many potential therapeutic targets. Here, nuclear magnetic resonance (NMR) experiments suggest that one such target could be a hairpin loop of 8 nucleotides in a pseudoknot that sequesters a 3' splice site in canonical pairs until a conformational change releases it into a dynamic 2 × 2-nt internal loop. NMR experiments reveal that the hairpin loop is dynamic and able to bind oligonucleotides as short as pentamers. A 3D NMR structure of the complex contains 4 and likely 5 bp between pentamer and loop. Moreover, a hairpin sequence was discovered that mimics the equilibrium of the influenza hairpin between its structure in the pseudoknot and upon release of the splice site. Oligonucleotide binding shifts the equilibrium completely to the hairpin secondary structure required for pseudoknot folding. The results suggest this hairpin can be used to screen for compounds that stabilize the pseudoknot and potentially reduce splicing.


Asunto(s)
Gripe Humana , Sitios de Empalme de ARN , Secuencia de Bases , Humanos , Gripe Humana/genética , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , Oligonucleótidos , Sitios de Empalme de ARN/genética , ARN Mensajero/metabolismo
3.
J Chem Theory Comput ; 18(2): 1241-1254, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-34990548

RESUMEN

Single-stranded regions of RNA are important for folding of sequences into 3D structures and for design of therapeutics targeting RNA. Prediction of ensembles of 3D structures for single-stranded regions often involves classical mechanical approximations of interactions defined by quantum mechanical calculations on small model systems. Nuclear magnetic resonance (NMR) spectra and molecular dynamics (MD) simulations of short single strands provide tests for how well the approximations model many of the interactions. Here, the NMR spectra for UCUCGU at 2, 15, and 30 °C are compared to simulations with the AMBER force fields, OL3 and ROC-RNA. This is the first such comparison to an oligoribonucleotide containing an internal guanosine nucleotide (G). G is particularly interesting because of its many H-bonding groups, large dipole moment, and proclivity for both syn and anti conformations. Results reveal formation of a G amino to phosphate non-bridging oxygen H-bond. The results also demonstrate dramatic differences in details of the predicted structures. The variations emphasize the dependence of predictions on individual parameters and their balance with the rest of the force field. The NMR data can serve as a benchmark for future force fields.


Asunto(s)
Simulación de Dinámica Molecular , ARN , Espectroscopía de Resonancia Magnética/métodos , Conformación de Ácido Nucleico , ARN/química
4.
J Chem Theory Comput ; 16(3): 1968-1984, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-31904966

RESUMEN

RNA and DNA are rapidly emerging as targets for therapeutics and as potential frameworks for nanotechnology. Accurate methods for predicting and designing structures and dynamics of nucleic acids would accelerate progress in these and other applications. Suitable approximations for modeling nucleic acids are being developed but require validation against disparate experimental observations. Here, nuclear magnetic resonance spectra for RNA and DNA single strands, CAAU and UCAAUC, are used as benchmarks to test molecular dynamics simulations with AMBER force fields OL3 and ROC-RNA for RNA and BSC1 for DNA. A detailed scheme for making comparisons is also presented. The results reflect recent progress in approximations and reveal remaining challenges.


Asunto(s)
ADN/química , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular/normas , ARN/química , Benchmarking , Humanos , Conformación de Ácido Nucleico
5.
Proc Natl Acad Sci U S A ; 116(52): 26266-26273, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31871180

RESUMEN

Basic neurophysiological research with monkeys has shown how neurons in the motor cortex have firing rates tuned to movement direction. This original finding would have been difficult to uncover without the use of a behaving primate paradigm in which subjects grasped a handle and moved purposefully to targets in different directions. Subsequent research, again using behaving primate models, extended these findings to continuous drawing and to arm and hand movements encompassing action across multiple joints. This research also led to robust extraction algorithms in which information from neuronal populations is used to decode movement intent. The ability to decode intended movement provided the foundation for neural prosthetics in which brain-controlled interfaces are used by paralyzed human subjects to control computer cursors or high-performance motorized prosthetic arms and hands. This translation of neurophysiological laboratory findings to therapy is a clear example of why using nonhuman primates for basic research is valuable for advancing treatment of neurological disorders. Recent research emphasizes the distribution of intention signaling through neuronal populations and shows how many movement parameters are encoded simultaneously. In addition to direction and velocity, the arm's impedance has now been found to be encoded as well. The ability to decode motion and force from neural populations will make it possible to extend neural prosthetic paradigms to precise interaction with objects, enabling paralyzed individuals to perform many tasks of daily living.

6.
J Org Chem ; 84(21): 13276-13298, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31538780

RESUMEN

Triple-helix formation, using Hoogsteen hydrogen bonding of triplex-forming oligonucleotides, represents an attractive method for sequence-specific recognition of double-stranded nucleic acids. However, practical applications using triple-helix-forming oligonucleotides and their analogues are limited to long homopurine sequences. The key problem for recognition of pyrimidines is that they present only one hydrogen-bond acceptor or donor group in the major groove. Herein, we report our first attempt to overcome this problem by using peptide nucleic acids (PNAs) modified with extended nucleobases that form three hydrogen bonds along the entire Hoogsteen edge of the Watson-Crick base pair. New nucleobase triples (five) were designed, and their hydrogen bonding feasibility was confirmed by ab initio calculations. PNA monomers carrying the modified nucleobases were synthesized and incorporated in short model PNA sequences. Isothermal titration calorimetry showed that these nucleobases had a modest binding affinity for their double-stranded RNA (dsRNA) targets. Finally, molecular modeling of the modified triples in PNA-dsRNA helix suggested that the modest binding affinity was caused by subtle structural deviations from ideal hydrogen-bonding arrangements or disrupted π-stacking of the extended nucleobase scaffolds.


Asunto(s)
Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/síntesis química , ARN/metabolismo , Técnicas de Química Sintética , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Ácidos Nucleicos de Péptidos/metabolismo
7.
J Neurophysiol ; 122(2): 707-720, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31242056

RESUMEN

During manipulation, force is exerted with the expectation that an object will move in an intended manner. This prediction is a learned coordination between force and movement. Mechanically, impedance is a way to describe this coordination, and object interaction could be anticipated by setting impedance before the hand moves the object. This strategy would be especially important at the end of a reach, because feedback is ineffective for rapid force changes. Since mechanical impedance is not subject to the time delays of feedback, it can, if set properly, produce the desired motion on impact. We examined this possibility by instructing subjects to move a handle to a specific target position along a track. The handle was locked in place until the subject exerted enough force to cross a threshold; the handle was then released abruptly to move along the track. We hypothesized that this ballistic release task would encourage subjects to modify impedance in anticipation of the upcoming movement and found that one component of impedance, stiffness, varied in a way that matched the behavioral demands of the task. Analysis suggests that this stiffness was set before the handle moved and governed the subsequent motion. We also found separate components of muscle activity that corresponded to stiffness and to changes in force. Our results show that subjects used a robust and efficient strategy to coordinate force and displacement by modulating muscle activity in a way that was behaviorally relevant in the task.NEW & NOTEWORTHY The arm can behave like a spring, and this mechanical behavior can be advantageous in situations requiring rapid changes in force and/or displacement. Selection of a proper "virtual" spring before the occurrence of a rapid transient could facilitate a desired responsive movement. We show that these spring-like arm mechanics, set in anticipation of an instantaneous force change, function as an efficient strategy to control movement when feedback is ineffective.


Asunto(s)
Anticipación Psicológica/fisiología , Brazo/fisiología , Fenómenos Biomecánicos/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
8.
Biochem Biophys Res Commun ; 511(2): 416-421, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30797552

RESUMEN

The pre-mRNA branch point sequence (BPS) anneals with a pseudouridine-modified region of the U2 small nuclear (sn)RNA, and offers a 2' hydroxyl group of a bulged adenosine as the nucleophile for the first catalytic step of pre-mRNA splicing. To increase our structural understanding of branch site selection, we characterized a duplex containing a BPS sequence that is common among multicellular eukaryotes (5'-UACUGAC-3') and the complementary U2 snRNA site using NMR. A major conformation of the expected branch site adenosine stacked within the duplex and paired with the conserved pseudouridine of the U2 snRNA strand. In contrast, the guanosine preceding the branch site appeared flexible and had weak contacts with the surrounding nucleotides. Pseudouridine-modified and unmodified U2 snRNA-BPS-containing duplexes remained structurally similar. These results highlight the importance of auxiliary factors to achieve the active bulged conformation of the branch site nucleophile for the first step of pre-mRNA splicing.


Asunto(s)
Adenosina/química , Seudouridina/química , ARN Nuclear Pequeño/química , Secuencia de Bases , Magnesio/química , Modelos Moleculares , Conformación de Ácido Nucleico , Concentración Osmolar , Empalme del ARN
9.
Chemistry ; 25(17): 4367-4372, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30746843

RESUMEN

The development of new RNA-binding ligands is attracting increasing interest in fundamental science and the pharmaceutical industry. The goal of this study was to improve the RNA binding properties of triplex-forming peptide nucleic acids (PNAs) by further increasing the pKa of 2-aminopyridine (M). Protonation of M was the key for enabling triplex formation at physiological pH in earlier studies. Substitution on M by an electron-donating 4-methoxy substituent resulted in slight destabilization of the PNA-dsRNA triplex, contrary to the expected stabilization due to more favorable protonation. To explain this unexpected result, the first NMR structural studies were performed on an M-modified PNA-dsRNA triplex which, combined with computational modeling identified unfavorable steric and electrostatic repulsion between the 4-methoxy group of M and the oxygen of the carbonyl group connecting the adjacent nucleobase to PNA backbone. The structural studies also provided insights into hydrogen-bonding interactions that might be responsible for the high affinity and unusual RNA-binding preference of PNAs.


Asunto(s)
Aminopiridinas/metabolismo , Ácidos Nucleicos de Péptidos/metabolismo , ARN Bicatenario/metabolismo , Aminopiridinas/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Ácidos Nucleicos de Péptidos/química , ARN Bicatenario/química , Electricidad Estática
10.
Biochemistry ; 58(8): 1094-1108, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30702283

RESUMEN

RNA thermodynamics play an important role in determining the two- and three-dimensional structures of RNA. Internal loops of the sequence 5'-GMNU/3'-UNMG are relatively unstable thermodynamically. Here, five duplexes with GU-flanked 2 × 2 nucleotide internal loops were structurally investigated to reveal determinants of their instability. The following internal loops were investigated: 5'-GCAU/3'-UACG, 5'-UUCG/3'-GCUU, 5'-GCUU/3'-UUCG, 5'-GUCU/3'-UCUG, and 5'-GCCU/3'-UCCG. Two-dimensional nuclear magnetic resonance spectra indicate the absence of GU wobble base pairing in 5'-GCUU/3'-UUCG, 5'-GUCU/3'-UCUG, and 5'-GCCU/3'-UCCG. The 5'-GCUU/3'-UUCG loop has an unusual conformation of the GU base pairs, in which U's O2 carbonyl forms a bifurcated hydrogen bond with G's amino and imino protons. The internal loop of 5'-GUCU/3'-UCUG displays a shifted configuration in which GC pairs flank a U-U pair and several U's are in fast exchange between positions inside and outside the helix. In contrast, 5'-GCAU/3'-UACG and 5'-UUCG/3'-GCUU both have the expected GU wobble base pairs flanking the internal loop. Evidently, GU base pairs flanking internal loops are more likely to display atypical structures relative to Watson-Crick base pairs flanking internal loops. This appears to be more likely when the G of the GU pair is 5' to the loop. Such unusual structures could serve as recognition elements for biological function and as benchmarks for structure prediction methods.


Asunto(s)
Guanina/química , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , ARN/química , Uracilo/química , Emparejamiento Base , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Termodinámica
11.
Sci Adv ; 4(5): eaar8521, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29795785

RESUMEN

RNA molecules are key players in numerous cellular processes and are characterized by a complex relationship between structure, dynamics, and function. Despite their apparent simplicity, RNA oligonucleotides are very flexible molecules, and understanding their internal dynamics is particularly challenging using experimental data alone. We show how to reconstruct the conformational ensemble of four RNA tetranucleotides by combining atomistic molecular dynamics simulations with nuclear magnetic resonance spectroscopy data. The goal is achieved by reweighting simulations using a maximum entropy/Bayesian approach. In this way, we overcome problems of current simulation methods, as well as in interpreting ensemble- and time-averaged experimental data. We determine the populations of different conformational states by considering several nuclear magnetic resonance parameters and point toward properties that are not captured by state-of-the-art molecular force fields. Although our approach is applied on a set of model systems, it is fully general and may be used to study the conformational dynamics of flexible biomolecules and to detect inaccuracies in molecular dynamics force fields.


Asunto(s)
Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Oligorribonucleótidos/química , Algoritmos , Reproducibilidad de los Resultados
12.
Biochemistry ; 57(14): 2121-2131, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29570276

RESUMEN

GU base pairs are important RNA structural motifs and often close loops. Accurate prediction of RNA structures relies upon understanding the interactions determining structure. The thermodynamics of some 2 × 2 nucleotide internal loops closed by GU pairs are not well understood. Here, several self-complementary oligonucleotide sequences expected to form duplexes with 2 × 2 nucleotide internal loops closed by GU pairs were investigated. Surprisingly, nuclear magnetic resonance revealed that many of the sequences exist in equilibrium between hairpin and duplex conformations. This equilibrium is not observed with loops closed by Watson-Crick pairs. To measure the thermodynamics of some 2 × 2 nucleotide internal loops closed by GU pairs, non-self-complementary sequences that preclude formation of hairpins were designed. The measured thermodynamics indicate that some internal loops closed by GU pairs are unusually unstable. This instability accounts for the observed equilibria between duplex and hairpin conformations. Moreover, it suggests that future three-dimensional structures of loops closed by GU pairs may reveal interactions that unexpectedly destabilize folding.


Asunto(s)
Motivos de Nucleótidos , Pliegue del ARN , ARN/química , Termodinámica
13.
RNA ; 24(5): 656-672, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29434035

RESUMEN

The RNA "GAGU" duplex, (5'GACGAGUGUCA)2, contains the internal loop (5'-GAGU-3')2 , which has two conformations in solution as determined by NMR spectroscopy. The major conformation has a loop structure consisting of trans-Watson-Crick/Hoogsteen GG pairs, A residues stacked on each other, U residues bulged outside the helix, and all sugars with a C2'-endo conformation. This differs markedly from the internal loops, (5'-GAGC-3')2, (5'-AAGU-3')2, and (5'-UAGG-3')2, which all have cis-Watson-Crick/Watson-Crick AG "imino" pairs flanked by cis-Watson-Crick/Watson-Crick canonical pairs resulting in maximal hydrogen bonding. Here, molecular dynamics was used to test whether the Amber force field (ff99 + bsc0 + OL3) approximates molecular interactions well enough to keep stable the unexpected conformation of the GAGU major duplex structure and the NMR structures of the duplexes containing (5'-GAGC-3')2, (5'-AAGU-3')2, and (5'-UAGG-3')2 internal loops. One-microsecond simulations were repeated four times for each of the duplexes starting in their NMR conformations. With the exception of (5'-UAGG-3')2, equivalent simulations were also run starting with alternative conformations. Results indicate that the Amber force field keeps the NMR conformations of the duplexes stable for at least 1 µsec. They also demonstrate an unexpected minor conformation for the (5'-GAGU-3')2 loop that is consistent with newly measured NMR spectra of duplexes with natural and modified nucleotides. Thus, unrestrained simulations led to the determination of the previously unknown minor conformation. The stability of the native (5'-GAGU-3')2 internal loop as compared to other loops can be explained by changes in hydrogen bonding and stacking as the flanking bases are changed.


Asunto(s)
Simulación de Dinámica Molecular , ARN Bicatenario/química , Emparejamiento Base , Guanosina/química , Enlace de Hidrógeno , Inosina/química , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico
14.
ACS Chem Biol ; 13(3): 533-536, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29298376

RESUMEN

Potential in vivo applications of RNA interference (RNAi) require suppression of various off-target activities. Herein, we report that replacement of a single phosphate linkage between the first and second nucleosides of the passenger strand with an amide linkage almost completely abolished its undesired activity and restored the desired activity of guide strands that had been compromised by unfavorable amide modifications. Molecular modeling suggested that the observed effect was most likely due to suppressed loading of the amide-modified strand into Ago2 caused by inability of amide to adopt the conformation required for the backbone twist that docks the first nucleotide of the guide strand in the MID domain of Ago2. Eliminating off-target activity of the passenger strand will be important for improving therapeutic potential of RNAi.


Asunto(s)
Amidas/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Argonautas , Humanos , Modelos Moleculares , Conformación Proteica , Interferencia de ARN , ARN Guía de Kinetoplastida
15.
Nucleic Acids Res ; 45(14): 8142-8155, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28854734

RESUMEN

While the use of RNA interference (RNAi) in molecular biology and functional genomics is a well-established technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siRNAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 and 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amide-modified RNA-DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs.


Asunto(s)
Amidas/química , Fosfatos/química , ARN Interferente Pequeño/química , Ribonucleasa H/química , Amidas/metabolismo , Secuencia de Bases , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Fosfatos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa H/metabolismo
16.
Chembiochem ; 18(21): 2165-2170, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28858428

RESUMEN

The development of nucleic acid base-pair analogues that use new modes of molecular recognition is important both for fundamental research and practical applications. The goal of this study was to evaluate 2-methoxypyridine as a cationic thymidine mimic in the A-T base pair. The hypothesis was that including protonation in the Watson-Crick base pairing scheme would enhance the thermal stability of the DNA double helix without compromising the sequence selectivity. DNA and peptide nucleic acid (PNA) sequences containing the new 2-methoxypyridine nucleobase (P) were synthesized and studied by using UV thermal melting and NMR spectroscopy. Introduction of P nucleobase caused a loss of thermal stability of ≈10 °C in DNA-DNA duplexes and ≈20 °C in PNA-DNA duplexes over a range of mildly acidic to neutral pH. Despite the decrease in thermal stability, the NMR structural studies showed that P-A formed the expected protonated base pair at pH 4.3. Our study demonstrates the feasibility of cationic unnatural base pairs; however, future optimization of such analogues will be required.


Asunto(s)
Emparejamiento Base , ADN/química , Ácidos Nucleicos de Péptidos/química , Piridinas/química , Temperatura , Timidina/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Piridinas/síntesis química , Termodinámica , Rayos Ultravioleta
17.
Biochemistry ; 56(29): 3733-3744, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28700212

RESUMEN

The prediction of RNA three-dimensional structure from sequence alone has been a long-standing goal. High-resolution, experimentally determined structures of simple noncanonical pairings and motifs are critical to the development of prediction programs. Here, we present the nuclear magnetic resonance structure of the (5'CCAGAAACGGAUGGA)2 duplex, which contains an 8 × 8 nucleotide internal loop flanked by three Watson-Crick pairs on each side. The loop is comprised of a central 5'AC/3'CA nearest neighbor flanked by two 3RRs motifs, a known stable motif consisting of three consecutive sheared GA pairs. Hydrogen bonding patterns between base pairs in the loop, the all-atom root-mean-square deviation for the loop, and the deformation index were used to compare the structure to automated predictions by MC-sym, RNA FARFAR, and RNAComposer.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Motivos de Nucleótidos , ARN/química , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Valor Predictivo de las Pruebas
18.
Methods Mol Biol ; 1490: 253-64, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27665604

RESUMEN

Knowledge of RNA secondary structure is often sufficient to identify relationships between the structure of RNA and processing pathways, and the design of therapeutics. Nuclear magnetic resonance (NMR) can identify types of nucleotide base pairs and the sequence, thus limiting possible secondary structures. Because NMR experiments, like chemical mapping, are performed in solution, not in single crystals, experiments can be initiated as soon as the biomolecule is expressed and purified. This chapter summarizes NMR methods that permit rapid identification of RNA secondary structure, information that can be used as supplements to chemical mapping, and/or as preliminary steps required for 3D structure determination. The primary aim is to provide guidelines to enable a researcher with minimal knowledge of NMR to quickly extract secondary structure information from basic datasets. Instrumental and sample considerations that can maximize data quality are discussed along with some details for optimal data acquisition and processing parameters. Approaches for identifying base pair types in both unlabeled and isotopically labeled RNA are covered. Common problems, such as missing signals and overlaps, and approaches to address them are considered. Programs under development for merging NMR data with structure prediction algorithms are briefly discussed.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Conformación de Ácido Nucleico , ARN/química , Emparejamiento Base , Secuencias Invertidas Repetidas
19.
J Phys Chem B ; 120(7): 1250-8, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26836489

RESUMEN

We report a disagreement between the predicted structures of the dTpT thymine pair (thymidylyl(3' → 5')thymidine) using nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations using the AMBER ff14SB and ff14 + ε/ζOL1 + χOL4 force fields for DNA. The NMR structure was determined using NOE couplings to thymine's H6 and J(HH) couplings between sugar protons. The MD simulation used replica exchange methods to produce converged statistics in a 500 ns trajectory. NMR data indicate that both thymine nucleotides in the pair display an anti conformation of B-DNA, while the MD simulations predict a structure in which the 5'-thymine is flipped into a syn conformation and the 3'-thymine is in an anti conformation. The syn conformation of the 5'-thymine predicted by MD appears by a ∼ 180-deg flip of the glycosidic angle in comparison to the B-form anti structure. Differences in the distortion of the sugar pucker between 5'-thymine and 3'-thymine further highlighted the surprisingly different conformation of the 5'- and 3'-ends. While both MD and NMR indicate the deoxyribose sugars to be primarily in the 2'-endo conformation typical of B-form DNA, the MD simulations predict a more twisted conformation (2'-endo/1'-exo) for the 5'-sugar and significant flexibility of C3' of the 3'-sugar. We conclude that the current AMBER force field does not accurately predict the conformation of single-stranded thymine, in agreement with previous work investigating single-stranded DNA.


Asunto(s)
ADN Forma B/química , Fosfatos de Dinucleósidos/química , Timina/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico
20.
Biochemistry ; 54(45): 6769-82, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26451676

RESUMEN

Knowledge of RNA structure is necessary to determine structure-function relationships and to facilitate design of potential therapeutics. RNA secondary structure prediction can be improved by applying constraints from nuclear magnetic resonance (NMR) experiments to a dynamic programming algorithm. Imino proton walks from NOESY spectra reveal double-stranded regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs, UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to identify constraints for the 5' to 3' directionality of base pairs in helices. The 5' to 3' directionality constraints were incorporated into an NMR-assisted prediction of secondary structure (NAPSS-CS) program. When it was tested on 18 structures, including nine pseudoknots, the sensitivity and positive predictive value were improved relative to those of three unrestrained programs. The prediction accuracy for the pseudoknots improved the most. The program also facilitates assignment of chemical shifts to individual nucleotides, a necessary step for determining three-dimensional structure.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación de Ácido Nucleico , ARN/química , Modelos Moleculares , Virus de la Leucemia Murina de Moloney/genética , Valor Predictivo de las Pruebas , Protones , ARN Viral/química , Sensibilidad y Especificidad , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...